Constraint matrix factorization for space variant PSFs field restoration
نویسندگان
چکیده
Context: in large-scale spatial surveys, the Point Spread Function (PSF) varies across the instrument field of view (FOV). Local measurements of the PSFs are given by the isolated stars images. Yet, these estimates may not be directly usable for post-processings because of the observational noise and potentially the aliasing. Aims: given a set of aliased and noisy stars images from a telescope, we want to estimate well-resolved and noise-free PSFs at the observed stars positions, in particular, exploiting the spatial correlation of the PSFs across the FOV. Contributions: we introduce RCA (Resolved Components Analysis) which is a noise-robust dimension reduction and super-resolution method based on matrixfactorization. We propose an original way of using the PSFs spatial correlation in the restoration process through sparsity. The introduced formalism can be applied to correlated data sets with respect to any euclidean parametric space. Results: we tested our method on simulated monochromatic PSFs of Euclid telescope (launch planned for 2020). The proposed method outperforms existing PSFs restoration and dimension reduction methods. We show that a coupled sparsity constraint on individual PSFs and their spatial distribution yields a significant improvement on both the restored PSFs shapes and the PSFs subspace identification, in presence of aliasing. Perspectives: RCA can be naturally extended to account for the wavelength dependency of the PSFs.
منابع مشابه
Proceedings of the third "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'16)
In large-scale spatial surveys, the Point Spread Function (PSF) varies across the instrument field of view (FOV). Local measurements of the PSFs are given by the isolated stars images. Yet, these estimates may not be directly usable because of the observational noise and the aliasing. Given a set of aliased and noisy stars images from a telescope, we want to estimate well-resolved and noise-fre...
متن کاملSpace Variant Blind Image Restoration
In this report, we are interested in blind restoration of optical images that are degraded by a space-variant (SV) blur and corrupted with Poisson noise. For example, blur variation is due to refractive index mismatch in three dimensional fluorescence microscopy or due to atmospheric turbulence in astrophysical images. In our work, the SV Point Spread Function (PSF) is approximated by a convex ...
متن کاملNew Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کاملAutomatic surface inspection for directional textures using nonnegative matrix factorization
A global image restoration scheme using nonnegative matrix factorization (NMF) is proposed in this paper. This NMF-based image restoration scheme can be used for inspecting the defects in directional texture surfaces automatically. Decomposing the gray level of image pixels into an ensemble of row vectors, we first reduce the data set from original data space into a lowerdimensional NMF space. ...
متن کاملReducing depth induced spherical aberration in 3D widefield fluorescence microscopy by wavefront coding using the SQUBIC phase mask
Imaging thick biological samples introduces spherical aberration (SA) due to refractive index (RI) mismatch between specimen and imaging lens immersion medium. SA increases with the increase of either depth or RI mismatch. Therefore, it is difficult to find a static compensator for SA. Different wavefront coding methods have been studied to find an optimal way of static wavefront correction to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1608.08104 شماره
صفحات -
تاریخ انتشار 2016